JAN 19th Sat & Sun 8 PM IST (GMT +5:30) ENROLL NOW
FEB 8th Sat & Sun 8 PM IST (GMT +5:30) ENROLL NOW
FEB 15st Sat & Sun 8 PM IST (GMT +5:30) ENROLL NOW
  • Course 1

    Artificial Intelligence Certification Training

  • Course 2

    Machine Learning Certification Training

  • Course 3

    Python Programming Certification Training

  • Course 4

    Java Certification Training (Self Paced)

  • Course 5

    AWS Certification Training (Self Paced)

  • Course 6

    Soft Skills Training (Self Paced)

Course Syllabus

Section 1: Introduction
Introduction to Software Training FREE 00:40:00
Object Oriented Design Patterns 00:35:00
Software Testing 00:30:00
Section 2: Advanced Computing
Introduction to Azure Data factory FREE 00:25:00
Algorithm analysis 00:45:00
Multi Threading in Softwares 00:40:00
Managing Software Testing 00:20:00
The Software Quiz 00:04:00
efwefwefwefwefwe
Introduction to Speech FREE 00:40:00

About Course

Artificial Intelligence and Machine Learning is taking over every other industry. From small companies to big tech-giants, all are implementing AI and ML to grow in their respective fields. On one hand, where AI and ML are so in demand, there is a shortage of skilled Artificial Intelligence Engineer and Machine Learning Engineer. Artificial Intelligence and Deep Learning Training Certification course by Eduranz is designed and structured by industry experts based on industry requirements and demands. This training program will help you master Python and its libraries for Artificial Intelligence, TensorFlow, and Keras. As part of this project-based training program, you will learn about Time Series Analysis, Predictive Analytics, Graphical Models, Reinforcement Learning, Convolutional Neural Networks, Recurrent Neural Networks, and many more. As part of Eduranz’s training program, you will get to work on real-time projects and assignments, which are also developed keeping in mind their implications in the real-world industry. The training program ends with tests, there will be a quiz that will perfectly reflect the type of questions asked in the job interviews, thus helping you score better marks.

Professionals who want to build a career in AI and Deep Learning Students aspiring to become AI Engineer and Deep Learning Engineer

The pre-requisites for Eduranz’s Artificial Intelligence course with Deep Learning are:
•Basic knowledge of programming and mathematics are beneficial

Artificial Intelligence Certification with Deep Learning has been designed and curated by industry professionals that prepare you for the industry that demands skilled Artificial Intelligence Engineer. As part of Eduranz’s Artificial Intelligence Course training program, you will get to work on real-time projects and assignments, which are also developed keeping in mind their implications in the real-world industry. Upon completion of the project work, which will be reviewed by a panel of industry experts, and upon scoring at least 60% marks in the quiz, you will be awarded the Artificial Intelligence and Deep Learning Training Certification by Eduranz.

Syllabus

In this chapter we will get an overview of all the important concepts of Python, its libraries and applications, to help us kick start the AI training course. Here’s the table of content for this chapter.

  • Basics of Python
  • OOPs Concept in Python
  • Introduction to NumPy
  • Introduction to Pandas
  • Data Pre-processing
  • Data Manipulation
  • Data Visualization

Hands-on:

  • Loading different types of dataset in Python
  • Arranging the data
  • Plotting the graphs
  • NumPy
  • Pandas
  • Scikit-learn
  • Matplotlib



Here, we will discuss about predictive analysis and important concepts related to it as shown below.

  • Fundamentals of Statistics
  • Generalized Linear Models
  • Regression and Clustering

This chapter will guide you through the important concepts of Machine Learning and algorithms. Let us take a look at the important concepts added in this chapter.

  • What is Machine Learning?
  • Supervised Learning – Regression
  • Supervised Learning – Classification
  • Model Selection and Boosting
  • Unsupervised Learning
  • Dimensionality Reduction
  • Association Rules Mining and Recommendation

Hands-on:

  • Regression Use case: Weather Forecasting
  • Clustering Use Case: Image classification
  • Clustering Use Case: Recommender system
  • Dimensionality Reduction Use Case: Structure Discovery
  • Association Rule Mining
    • Use Case Apriori Algorithm: Market Basket Analysis

This chapter discusses about one of the most important concepts in this course, time series analysis.

  • What is Time Series?
  • Time Series Analysis techniques and applications
  • Components of Time Series
  • Moving average
  • Smoothing techniques
  • Exponential smoothing
  • Univariate time series models
  • Multivariate time series analysis
  • Arima model
  • Time Series in Python

Hands-on:

  • Use Case of Checking Stationarity
  • Learn how to convert a non-stationary data to stationary
  • Implement Dickey Fuller Test
  • Use case of ACF and PACF
  • Generate the ARIMA plot
  • Time Series Analysis Forecasting

This chapter will discuss about graphical models. Here’s a list of topics included in this chapter.

  • Understanding graphical model
  • Bayesian Network
  • Inference
  • Model learning

Hands-on:

  • Use case Bayesian Network

In this chapter, you will get an introduction to reinforcement learning and how to implement it. Here’s a list of concept you will get to learn in this chapter.

  • Getting started with Reinforcement Learning
  • Bandit Algorithms and Markov Decision Process
  • Dynamic Programming and Temporal Difference Learning methods
  • What is Deep Q Learning?

Hands-on:

  • Calculating Reward
  • Discounted Reward
  • Calculating Optimal quantities
  • Implementing Q Learning
  • Setting up an Optimal Action


In this chapter, we will talk about text processing, Natural Language Processing, sentiment analysis, and many more.

  • Text Pre-processing and Nature Language Processing
  • Analyzing Sentence Structure
  • Text Classification
  • Sentiment Analysis

Hands-on:

  • Use case: Twitter Sentiment Analysis
  • Use case: Chat Bot



This chapter will highlight fundamentals of deep learning. Here’s an introductory lesson for you to get started with Deep Learning.

  • What is Deep Learning?
  • Why Deep Learning?
  • Advantage of Deep Learning over Machine learning
  • 3 Reasons to go for Deep Learning
  • Real-Life use cases of Deep Learning

This chapter will guide you through workings of Deep Learning and tools that we can use to implement deep learning.

  • How Deep Learning Works?
  • Activation Functions
  • Illustrate Perceptron
  • Train a Perceptron
  • Parameters of Perceptron
  • TensorFlow
  • Graph Visualization
  • Constants, placeholders, and variables
  • Create a Model

Hands-on:

  • TensorFlow code- basics
  • Use case Implementation
  • Building a single perceptron for classification on SONAR dataset

In this chapter we will talk about advanced concepts of Neural Networks with TensorFlow.

  • Understand limitations of a Single Perceptron
  • Understand Neural Networks in Detail
  • Illustrate Multi-Layer Perceptron
  • What is a backpropagation?
  • Getting started with TensorBoard

Hands-on:

  • Understand Backpropagation with an example
  • Using TensorFlow build MLP Digit Classifier
  • Building a multi-layered perceptron for classification of Hand-written digits

In this chapter we will talk about Deep Networks and all the core concepts related to it. Here’s a list of concepts included in this chapter.

  • What is Deep Network?
  • Why Deep Networks?
  • Understand How Deep Network Works?
  • How Backpropagation Works?
  • Illustrate Forward pass, Backward pass
  • Different variants of Gradient Descent
  • Types of Deep Networks

Hands-On

  • Use-Case Implementation on SONAR dataset
  • Building a multi-layered perceptron for classification on SONAR dataset

This chapter will guide you through the concepts related to Convolution Neural Networks.

  • What is CNN?
  • Application of CNN
  • Architecture of a CNN
  • Convolution and Pooling layers in a CNN

Hands-On

  • Understanding and Visualizing a CNN
  • Learn how to build a convolutional neural network for image classification

In this chapter we will be discussing about recurrent neural networks and how to implement it.

  • Introduction to RNN Model
  • Application use cases of RNN
  • Modelling sequences
  • Training RNNs with Backpropagation
  • Long Short-Term memory (LSTM)
  • Recursive Neural Tensor Network Theory
  • Recurrent Neural Network Model

Hands-on:

  • Building a recurrent neural network for SPAM prediction.

This chapter will guide you through all the important concepts related to RBM and autoencoders.

  • Introduction to Restricted Boltzmann Machine
  • Applications of RBM
  • Collaborative Filtering with RBM
  • Getting started with Autoencoders
  • Autoencoders applications

Hands-On

  • Learn how to build an autoencoder model for classification of handwritten images extracted from the MNIST Dataset

Here you will learn how to implement Keras API and how to use Keras with TensorBoard.

  • Getting started with Keras
  • Compose Models in Keras
    • What is sequential composition?
    • What is functional composition?
  • Predefined Neural Network Layers
  • What is Batch Normalization?
  • Save and Load a model with Keras
  • Customize the model training process

Hands-On:

  • Use case Keras implementation
  • Learn how to build a model using Keras to do sentiment analysis on twitter data reactions on GOP debate in Ohio
  • Using TensorBoard with Keras

This chapter will elaborate implementation of TFLearn API with use cases. Here’s a list of concepts you will be learning in this chapter.

  • What is TFLearn?
  • Compose Models in TFLearn
    • Sequential Composition
    • Functional Composition
  • Predefined Neural Network Layers
  • Batch Normalization
  • Save and Load a model with TFLearn
  • Customize the Training Process

Hands-on:

  • Use case Implementation with TFLearn
  • Use TensorBoard with TFLearn
  • Build a recurrent neural network using TFLearn to do image classification on hand-written digits

Projects

  • Project: Chatbot

    Problem Statement: Your company wants to install a chatbot on the website to enhance the user experience. As the AI Engineer, your task is to build a chatbot using Python and deep learning techniques with great accuracy.

    Industry: AI

    Topic: Deep Learning, NLTK, Keras, pickle, tensorflow, json

     

    Project: Driver Drowsiness Detection System

    Problem Statement: You are working with a team of AI Engineers on a project to prevent accidents due to driver drowsiness. Your goal is to build a deep learning model to detect if the drivers eyes are closed or open.

    Industry: AI, IoT

    Topic: OpenCV, CNN, TensorFlow, Keras, Pygame

Preview Video

Certification

Features

Personal Mentor


At the time of enrollment team Eduranz will assign one mentor for you and he will be guiding you in this lifetime Journey.

24/7 Tech Adviser Support


Lifetime 24/7 Technical and Non Technical Support from team Eduranz.

Lifetime Access


Get Lifetime opportunity to access and attend the live sessions multiple times.

Assignments & Quizzes


Every module will be followed by certification based assessment and quiz.

Certification


Become a Certified Professional.

Job Assistance


Team Eduranz will update your Resume before forwarding it to our 60+ global Clients.

FAQs

All of our highly qualified trainers are industry experts with at least 10-12 years of relevant teaching experience. Each of them underwent a rigorous selection process that included screening profiles, technical assessments, and training demonstrations before being certified for training. We also ensure that only high-level graduates live in our faculty.

Live Virtual Classes or Online Classes: With online class training, you can access courses via video conferencing from your desktop to increase productivity and reduce work time and personal time. Independent study online: In this mode, you will receive videos with lectures and can continue the course as you wish. Win Python Portable Distribution is an open-source environment where all the exercises are immediately carried out. Installation instructions are given during training.

This Eduranz Artificial Intelligence course gives you hands-on experience in mastering one of the best programming languages, Python. In this Artificial Intelligence online course, you will learn basic and advanced Python concepts, including MapReduce in Python, machine learning, streaming Hadoop, and Python packages such as Scikit and Scipy. After successfully completing training, you will receive an Eduranz Attendance Certificate. As part of this Artificial Intelligence online course, you work on real-time projects that are very important in the corporate world, on step-by-step assignments and curricula developed by industry experts. After completing the Artificial Intelligence course, you can apply for some of the best jobs in the top-ranked MNC in the world. Eduranz provides lifetime video access, tutorials, 24×7 support, and upgrades to the latest version at no additional cost. Therefore it is definitely a one-time investment for a practical Python online course.

Eduranz offers a 24/7 request solution and you can pick up your tickets at any time from our dedicated support team. You can use email support for all your questions. If your request is not answered via email, we can also arrange one-on-one discussions with the faculty. You will be glad to know that you can switch to Eduranz support after completing the training. We also don’t limit the number of tickets you can collect when solving questions and doubts.

Eduranz offers independent learning for those who want to learn at their own pace. This training also gives you the benefits of email questions, tutorial sessions, 24×7 support, and access to modules or LMS for lifelong learning. In addition, you will receive the latest version of the learning material at no additional cost. Independent Eduranz training is 75% lower than teacher-led online training. If you experience problems while studying, we can arrange virtual courses directly with the trainer at any time.

Eduranz offers the most up-to-date, relevant and valuable projects in the real world as part of the training program. In this way, you can integrate what you have learned in the real industry. Each training is delivered with various projects where you can thoroughly test your skills, learning and practical knowledge so that you are well prepared for the industry. They work on very interesting projects in the fields of high technology, e-commerce, marketing, sales, networking, banking, insurance and more. After successfully completing your project, your skills will be counted as a result of six months of intensive industry experience.

Eduranz actively supports all trainees who have successfully completed the training. That’s why we are involved in more than 80 top MNCs worldwide. This way you can be in exclusive organizations such as Sony, Ericsson, TCS, Mu Sigma, Standard Chartered, Cognizant, Cisco and other similar-sized companies. We also support you during job interviews and preparation of your CV.

In any case, you can switch from self-directed self-training to online training only by paying an additional amount and participating in the next set of training that will be specifically notified to you.

After completing the Eduranz Training Program along with all real projects, tests and assignments and achieving at least 60% points in the qualification exam; You received a certificate that was certified by Eduranz. This certification is recognized by Eduranz’s partner organizations, which includes a lot of top MNCs worldwide that are also part of the Fortune 500 list.

In our job support program, we help you start your dream job by sharing your resume with potential tenants, helping you make resumes, and preparing you for interview questions. Eduranz training should not be seen as an employment agency or employment guarantee, because the entire employment process is handled directly between the student and the employing company and the final choice is always left to the employer.

ENROLL NOW
  • 182.04$
  • I am a custom Detail
0 STUDENTS ENROLLED
    • 100% Money Back Guarantee
    • Lifetime Access with Up-gradation
    • 24*7 Lifetime Support
    • Flexible Schedule
    • Certification with Job Assistance
    DROP US A QUERY










    © 2019 Eduranz. All rights Reserved.
    X